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FOREWORD

NASA Study 2,1, Operations Analysis, addresses several
problem areas related to future operational concepts for the Space
Transportation System. Emphasis has been placed on Shuttle upper
stage operations which could be employed to perform deployment,
retrieval or space servicing of automated satellite programs, The
October 1973 Mission Model serves as the baseline definition of the
launch schedule for expendable satellite operations. This has been
modified to reflect operations associated with space servicing, The
Space Shuttle Payload Data Analysis (SSPDA), also issued in October
1973,was used as the baseline definition for payload design information,
As -a part of this study, a significant group of these payloads have been
reconfigured for space servicing in which ea.c;ixmpa;ylbad. is composed
of space replaceable (SRU)} and nonreplaceable (NRU) units,

This report forms a part of the Study 2.1 effort and addresses
the potential problems that could be encountered with upper stage
~operations when servicing an automated satellite in geosynchronous
~orbit, Other reports to be issued under this study effort provide the
basic space' serviceable payload design data, an assessment of upper

stage software complexities and cost, and the results of the space
servicing logistics analysis,

Study 2.1, Operations Analysis has been performed under the
direction of Mr, V. N. Huff, NASA Headquarters, Washington, D. C.,
Code MTE, Contract Number NASW-2575,
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1. INTRODUCTION

The main t};ruét of the effort under Operitions Analysis (Study 2, 1)-
“has been directed at the investigation of automated 3pa¢e servicing of payloads
using a Shuttle upper stage as a means to reduce future program costs, .One
of the concerns regarding automated space servicing has been the complexities
associated with responding to contingencies. For this reason, serious consids
eration has been given to placing man-in-the-loop to control the upper stage
during servicing operations. A completely autonomous operation has very
little capability to cope with contingencies if, in fact,they could develop.
However, extensive manned interfaces and control center functions inherently
result in complex and gostly operations. Therefore, this effort was originated
to assess potentfal contingencies associated with space servicing and deter mine
to what d'egrléé," if any, manned interactive support should be employed, This
output is then used in Reference 1 to provide a basis for estimating upper stage
software costs, \

In the context employed in this effort, contingencies imply occurrence
of some event which causes action to be required beyond the nominal planned
operations, Contingencies may evolve from payload, upper stage, or service
unit failures occurring during the servicing process, Contingencies occurring
prior to or after servicing are considered to be part of the ""deploy" or retrieval
operation and do not impact on the servicing problem. In addition, failures at
the mission control center which could precipitate a contingency in orbit
during servicing are assumed to be negligiblé and are therefore not addressed.

Finally, in any task of this type it is necessary to use a good deal of
judgment as to how cdn-tingencies ghould be traced, The fundamental questions
are: is manned interactive support required and, if so, to what extent?
Therefore, the analysis is carried only to a depth necessary to provide
rational answers to these queétions. The analysis may be extended to derive
design criteria for redundancy or operational procedures; however, a base-
line upper stage definition would be required beyond that employed for this
effort, In this study it is not necessary to define subsystem equipment, but

only subsystem functions,



The final design solution for the Shuttle upper stage equipments
should not materially alter the results or conclusions of this effort, with
one exception: it is assumed that the upper stage has sufficient performance

capability to perform space servicing, otherwise the question is academic,



2. GROUND RULES AND ASSUMPTIONS

This analysis is limited to some extent by the lack of a firm upper
stage definition, For this reason, certain ground rules and assumptibns are
required relative to the design and operation of the upper stage when perform-
ing space servicing. It is also necessary to make specific assumptions
relative to the payload, With these in hand, it is then possible to assess
contingencies which could occur during the servicing operations, The
. results may be altered if the design and operational concept are significantly'
changed but,for the most part, exact equipment definitions are not required.
It is only necessary to define the functions, since these should be common,
no matter what equipment definition is finally employed in the ﬁpper stage
design. The only questions of interest for this study involve whether or not
manned interactive support is required and, if 75-0,7‘ to what degree ? Ttis -
possible to extend the fauit trees, with reliability functions to aid the hard-
ware definition, but this is beyond the current objectives.

Servicing operations are assumed to be initiated by some failure or
warning action emanating from the payload in orbit. It has been assumed
that the payload user will have the 'responsibility for identifying the failure
condition, isolating the failure to a given space replaceable unit (SRU), and
'notifying the mission control center that a service mission is required. The
user will then support the servicing operation when it occurs by placing the
payload in a serviceable configuration, that is, three-axis stabilized and
oriented to receive the upper s'tage docking mechanism, A schematic of the
operational approach is shown in Figure 2-1, In addition, all appendages
must be retracted away from the docking path of approach, When configured
for servicing, the payload can be powered down to a quasi-dormant condition
to minimize the possibility of false signals altering the payload configuration.
The payloads must have corner reflectors compatible with the upper stage
laser radar system to support rendezvous and docking, These reﬂectors'
should be positioned to provide a reference for the relative roll angle between

the payload and the upper stage.
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Once an SRU has been identified for replacement, it is loaded into a
service unit along with other SRUs for the same or other payloads of the
same orbital characteristics. When a sufficient load has been achieved,
the upper stage (with a service unit and the SRUs) is deployed in low-~earth
orbit by the Shuttle, The upper stage then transfers to geosynchronous
orbit in an autonomous manner, as is currently done with the Titan ITIC
transtage. Under normal conditions (including 30-dispersions), the upper
stage guidance system inserts the stage within lager radar range of the first
payload to be serviced., A laser search mode is then initiated automatically
and lock-on performed in a normal manner,

The rendezvous maneuver then progresses,based upon the lager
radar signals, to the point of impact. A hard dock is performed and the
service unit latched to the payload. Prior to docking, it may be desirable
to perform a standoff inspection maneuver, This would employ a video
camera with a display in the mission control center. All payload functions
are deactivated to prevent interaction with the upper stage control system.

Once a bhard dock has been achieved, operational control is assumed
by the service unit sequencer, Figure 2-2 provides a schematic diagram
of the interfaces between the upper stage (Tug), service unit and the payload
when hard docked for servicing. The service unit is indexed to a known
detent and the sequence then proceeds through removal of the identified
failed SRU and replacement with a new article, The sequence would be
repeated if more than one SRU is to be replaced. The service unit is
essentially a self-contained unit except for the communications link. This
minimizes the impact on the upper stage which is designed for a wide
variety of missions. This concept was employed for the contingency
analysis to follow,

Several points deserve to be addressed regarding these interface
definitions, It appears prudent to minimize power transfer across any
interface, Therefo're, a concept has been selected with each element

independent of the other, except for signal transfers across the interface,
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This is particularly true with the upper stage aﬁd the service unit interface, -
The laser and TV systems have been placed on the forward part of the service
unit to provide adequate viewing for acquisition and docking with the payload.l
The sensed data is relayed to the upper stage navigation computer and the
communication subsystem. If necessary, the command link can be employed
to override the discrete commands generated from within the navigation
computer, .

Discrete commands will be received and issued by the service unit
sequencer. The sequencer must receive a command or an enable to
initiate the various sequences required to change out modules., After SRU
transfer has been compléted, the sequencer must issue a discrete to the
uppér stage to initiate undocking with the payload, The upper stage would
then perform a standoff maneuver while the payload is checked out by the
user ground operations center., If the checkout is successful, the upper
stage is reinitialized and the mission is continued, If checkout is unsuccess-
ful or marginal, the user may elect to recycle the operation or to retrieve
the payload if the problem warrants, This is dependent upon the remaining
performance of the upper stage, A representative timeline of events and
actions is provided in Figure 2-3,

It should be noted that approximately 2.5 hours have been allocated
for payload checkout after servicing. In the time period of interest, it is
anticipated that automated checkout procedures will be employed. There-
fore, the majority of this time is to allow repositioning of appendages and
reorientation of the payload, if required. Increased time periods may be
required for certain payloads, These may be easily accommodated but a
detailed review would be necessary to assure that the seven-day operational
period of the upper stage is not violated,

A candidate space servicing unit design is shown in Figure 2-4, This
concept has been developed at The Aerospace Corporation (Ref, 2) and

represents-a viable, but not necessarily an optimum approach, For this study,
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it is necessary only to understand the functions involved, since these will

be common to most concepts under consideration. Spare SRUs are loaded
onto the service unit ag shown, One slot alwa_ys remains empty.After a
hard dock with the payload is achieved, the module to be replaced is
retracted into this spare slot. The service unit ring frame is then indexed
to the proper replacement position and the new SRU is inserted into the
vacated slot on the payload, The design concept shown employs redundant
drive motors, as demonstrated in Figure 2-5, for both the ring frame index
motion and the translate plunger motion. Other approaches could be just as
valid, but this is sufficient for the current effort.

In addition, it should be noted that replacement SRUs are not
confined to the representative boxes shown in Figure 2-4., Elements may
exceed these confines in any of three dimensions. An example is shown in
Figure 2-6, indicating SRU placements for launch servicing and operational
positions on a space serviceable Earth Observatory Satellite (Ref, 2), It
ig necessary to fold the oversized SRU during launch., Prior to servicing,
the oversize element would be extended in a peripheral direction to allow
an unobstructed docking face. The mechanisms for retraction or extension
would be exercised by discretes issued from the service unit sequencer.

After servicing, the particular SRU involved is repositioned to an operational
position.

The above scenario attempts to define a concept of operation
which may or may not require . manned interactive support, Many if not all
of the functions could be automated, Automation of the rendezvous and docking
maneuver is certainly within the current state of the art., SRU exchange is a
straightforward sequence of events which can be easily preprogrammed prior
to liftoff, In the event several satellites are tobe serviced requiring an extended
time period, it may evenbe possible to operate the upper stage withouta ground
navigationupdate. Since the ephemeris of each satellite mustbe known toa high
degree of accuracy, itis reasonable for the upper stage, after docking toreinitialize

the navigation computer to the known satellite state vector,
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Conseéquently, if manned interactive support is required, it will
be for the purpose of accommodating unknown contingencies, réquiring
reasoning and logic which cannot be readily preprogrammed. Although
automated systems may appear complex, it should be recognized that
the addition of command receivers, decoders, increased telemetry, and
display provisions for manned support inherently complicates the system
design even further. Therefore, manned interactive support adds another
dimension to the reliability equation and this additional complexity must
be justified. This is the basic problem to be addressed by the contingency

analysis,



3. STUDY APPROACH

The approach employved involves use of a modified "Fault Tree"
technique employed iﬁ safety analyses, Application of the fault tree is
not ag rigorous in this case, because the objective is to assess contingencies
only at the system level without going into depth relative to component
failures which could precipitate an event, It is not necessary to sPecify
all modes of failures, but only those leading to the 'tDP events of the tree,
Neither is it possible or necessary to incorporate statistical data in the
trees developed. The answer desired is one of judgment, addressing the
need for manned interactive support from a ground command station.

The analogy to a fault tree lies in the manner of tracing potential
events down to the action which could cause that event to transpire, The
analogy is shown in Figure 3-1, The first level is the event to be inveétiga.téd.
For the purpose of this study, that event is "Failure of the Service Mission. "
The second level of the tree addresses the question: what major events
could occur to lead to a failure of the servicing mission? Level 3
addresses '"why' did this event occur, and searches for the major
elements which could lead to the major event occurrence, Tracking the
tree structure further to the fourth level arrives at the conditions which
could occur and asks "how?' It is now possible in an orderly manner to
address the subelements and subconditions which are levels 5 and 6.

"Or'' gates are used to express the fact that the next higher event or
condition could occur from any of the subpaths below it, An "and" gate
is employed when subevents are conditional; that is, one action will precipitate
to the next higher event, only if another condition exists to enable this
action, Therefore, passage through an ""and'' gate, in general, represents
a much lower probability of occurrence than passage through an "or' gate.

In this way the tree helps to visualize those necessary and sufficient

conditions at each level to allow passage to the next higher rung of the tree.
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Finally, it is necessary to distinguish between events and conditions
because this is very important in structuring the tree. An event in the
context used here represents a point in time where an action has or could
occur. A condition represents a span of time over which the event could
occur. The process then consists of hardware component failures at the
lowest level (which are events in this sense) triggering a condition at the
next level. This condition, combined with others, if necessary, pyramids
to an event at the next higher level, This process continues to the top
event, '"Failure of the Servicing Mission," In this analysis, the tree has
been structured to the conditions which exist during the servicing operation.,
In this way, it is seldom necessary to speculate on the type of hardware
-involved, but to recognize only that some hardware is required to perform

the function involved,
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4, CONTINGENCY FAULT TREES

A total of 12 trees have been developed. The top level fault tree
is defined by Figure 4-1. Lower tier trees follow as each branch is
expanded. The hazard description for each numbered block of the tree is
provided in table form in the Appendix. In general, each tree is carried
down five levels below the top event to arrive at various subsystem functions.
The tree may be expanded at any level, but the organization is such that . -
the major events and conditions have been described and further expansion
is not warranted,

The top event, Failure of the Service Mission, may be caused by
any of four major events, Each one of the four events can be prec1p1tated
by failures of any one of the three major elements of the system, The-
major events to be considered are:

a. Either the upper stage, service unit, or the payload fail

in a manner which allows a catastrophlc collision to
occur (1. 1). ‘

h. One of the three major elements fails in such a manner that,
although a catastrophic collision is avoided, it is not possible
to perform the rendezvous and docking maneuvers (1, 2),

C. Rendezvous and docking have occurred, but for one reason
or another, the servicing functions cannot be completed (1. 3).

d, Servicing has been completed, but for one reason or another,
the upper stage and service unit cannot undock or detach
from the payload.

The failure to successfully complete the servicing mission does not
necessarily imply ioss of the payload, service unit, or upper stage. However,
the emphasis here is, could manned interaction prevent loss of the mission
and the attendant cost associated with a subsequent repeat performance.
Altering the top event to address a specific vehicle or equipment loss would
obviously force a restructuring of the fault trees,

If the upper stage failed to rendezvous, it is possible that the stage
could return to the Shuttle and servicing be performed on a subsequent flight.

The same could be true if servicing failed. I the payload could not be
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detached (failure to-undock), it may be possible to bring the payload to the
Shuttle in low-earth orbit, depending upon the perfog'ﬁia;ﬁce cépabilii:jr of
the upper stage, However, if a catastrophic collision occurs, it is assumed
that both the payload and the upper stage are lost.

Figure 4-2 traces Block 1,1, Catastrophic Collision, through upper
stage (Tug} failures. Failures leading to a collision could result from upper
stage subsystem failures or failures of the steering signals to be received
by the Navigation computer, Tracking Block 1,1,1.1 shows that subsystem
failures only pose a threat if the upper stage and payload are on a collision
course after the insertion maneuver has been performed, Normal procedure
would cause the upper stage to insert below and aft of the payload. A severe
-overshoot would be reqmred therefore, to assume a collision course,
Although this should be very remote, there is an additional inherent- safety -
margin derived from the laser radar. If the upper stage subsystems are
operative, the stage will perform a standoff maneuver, thereby preventing a
~collision, Further backup could be provided via the command link to null
the relative velocity. ‘ '

Consequently, it appears that adeqguate safeguards can be achieved
with current design techniques, The command override capability will
inherently exist to support retrieval of the stage by the Shuttle. Hence,
this presents no problems unique to servicing. Although manned backup of a
functions might be desirable, it is difficult to see where they would be .
required because a reasonable degree of reliability already exists with the
current state of the art,

Failure of the interface signals may present different problems but
the response-would be similar. I the signals are lost for a period of time,
the normal procedure would call for a standoff maneuver. This could easily
be performed automatically and a catastrophic collision avoided.

The same is not true for payload originated failures as shown in
Figure 4-3, Here it should be remembered that each payload, although

space serviceable, has unique characteristics, Automatic responses to

4-3



¥-p

CATASTROPHIC
COLLISION OCCURS

1.1

[l .
- "
TUG FAILS
111
| 1
TUG SUBSYSTEMS TUG/SU INTERFAGE
FAIL SIGNALS FAIL
é 1.1.1,1 1.1.1.2
i I 1
COLLISION LASER RANGING *PL/SU TV 5YSTEM
COURSE A SIGNALS INTERFACE FAILS
SWITCH FAILS
L1 1.1 ] ERRONEROUS TO SIGNAL
shetels 1.1.1.2.1 Li.1.2.2 L1.1.2.3
ATTITUDE PROPULSION
FAILSTO
‘ /2 STQP TUG
.2 L1.L.LI.6
i 1 1 1
NAVIGATION COMM POWER POWER
SYSTEM SYSTEM SYSTEM A SYSTEM L{?GAHIES sﬁszg‘
ERRORS FAILS FAILS FAILS
1.1.1. 1.3 1.1.1,1.4 1.1.1.2.1.1 l.l.1.z2.1.2 L.1.1.2,3,1  1L1.l.2.3.2 1.1.1.2.3.3
+CONDITIONAL
ATTITUDE
NON - TUMBLES
BIAS RESPNSV TUG FAILS ON FAILS OFF|
11.1.1.2.0 1.1.1.1.2.3 1.1.1.1.2.4 l.1.1.1.5.1 1.1.1.1.5.2
PL REF
ATTITUDE
ERROR
«h E RO EL

Figure 4-2. Tug Failures Resulting in a Catastrophic Collision



S=¥

COLLISION
OCCURS

CATASTROPRHIC

TUG FAILS

PAYLOAD FAILS

1.1.2

1

SERVICE UNIT FAILS

.

" | 1
FAILS TO POWER STRUCTURAL
DOWN FAILURE E Mj’;&%ﬁﬁgg‘;CT FAILS TO REQRIENT
OF PATICGAD '
LLz1 l.1.2.2 . é 1.1.2.3 1.1.2.4
il [ : —
ANGULAR ATTITUDE APPENDAGE : :
DISTURBANGCE CONTROL FAILS OBSTRUCTS STRUCTURAL MECHANICAL ELECTRICAL
OCCURS TO RESPOND DOCK SIDE FAILURE FAILURE FAILURE
1.1.2.1.1 1.1.2.1.2 o 1.1.2. 5.1 T.23.2 T T 7 TT
[ | :
UNWANTED DISTORTED FAILURE TO | FAILURE OF
ks NS PAYLOAD REGEIVE ATTITUDE
% FRAME COMMAND CONTROL SYST
f Ji.1.2.2.1 1.1.2.3,1 : T.1.2.4.2
I 1 | 1 | 1
: LAUNCH . EXPLOSIVE ‘
ATEENDAGE ISPLas o ENT ENVIRONMENT prepapeal. 'COMFONENT POWER ACS' S&C
DISTORTION ENVIRONMENT,
1.1.2.2.1.1 "1,1.2,2.1.2 1.1.2.2.2.1 1.1,2.2,2.2 CL1.2.4.2.1 1.1.2.4.2.2 I1.1.2.4 2.3

.1.2.2.2.3

Figure 4-3, Payload Failures Resulting inf a Catastrbphic Collision .

i
:




contingencies may not be practical. Also, experience has shown that

it is not always possible to accurately predict the extent of a failure from
telemetry, even though the failure could be isolated to a given SRU. A
fundamental structural failure could pose a serious problem. Failure to
fully retract appendages could also be serious although judicious placement
out of the docking path could minimize this hazard. Therefore, mechanical
and structural failures appear to provide a rational reason for concern,
relative to manned interactive support.

Another biranch of this tree (Fig, 4-3) addresses the question of
failure to reorient for docking (1.1.2.4), This may not be required in all
cases and therefore is conditional, However, it is seen that several failures
could precipitate this condition, A prudent design approach with even a low
level of redundancy should be adequate to preclude this condition from
becoming a serious problem, Standard telemetry data is sufficient to
indicate the attitude position and this information could be relayed to the
upper stage operations center to postpone docking, Consequently, although
this is a possible failure branch, it does not appear to demand a heavy
interactive support role.

There is one more branch required to complete the catastrophic
collision tree, This addresses problems that could evolve from failures
of the service unit (Fig., 4-4), There is always the possibility of sensor
failures, although video coverage could provide a backup to the laser to
prevent a collision if man were active in the control loop., The power
supply is the one element that could result in loss of both signals, Further
expansion of the tree at this point would also show that a collision could
occur as a result of erroneous signals, Redundant sensors could be
employed but there may be a '"voting'' problem; hence, the alternate backup

{at least to prevent a collision) of a video camera seems rational,
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A similar condition exists if the electrical interface connectors
fail, which is not at all uncommon., However, if the laser and television
outputs were transmitted through separate connectors, or redundant pairs
employed, this should be a minor problem, In addition, an automatic
standoff could be implemented for loss of signal conditions. Therefore,
these two branches do not show a need for man's intelligence in the primary
loop, although as a backup it may be possible to reduce component redundancy
while maintaining a rational degree of reliability.

There are two unique features that should be considered bhefore
leaving this particular branch {l.1,3), Although low in probability, it is
possible that a structural problem occurs due to ascent loads, unusual
vibrations, aging, or other factors. This does not require a structural
failure, but merely a distortion such that the docking probe or other
structural parts impact the payload improperly causing damage to the
payload, service unit, or upper stage, A launch lock failure, which
attaches the service unit to the upper stage, would be one example of an
event that could precipitate this condition, Under these circumstances, it
is difficult to visualize how manned interactive support could improve
this picture. Information would have to be supplied via telemetry and
the only decision to be made if a condition arises is "go" or '"no-go."

The thought process is dependent upon a limit switch signal or strain
gauge signal which can easily be redundant and the "no-go'' action auto-
matically programmed. This may result in an occasional extra flight due
to false signals but loss of the payload, Tug, or service unit would be
avoided,

A similar set of conditions exists for oversize SRUs (1.1,3,4)
that extend beyond the forward interface of the service unit, Prior to
docking, these SRUs must be retracted away from the path of approach.

Failure to do so obviously presents an obstruction which could be fatal.
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Monitoring of the positi.on-i-ng' sequence would normally be done by telemetry .
and again, "go/no-~go' decisions could be mé;de automatically. It might be
possible to install some means of visual observation by use of fibre optics
or some other device, but it is not obvious that a clear field of view would
always be available, Also, since these mechanisms must have electrical :
connectors with the baseplate and the baseplate must receive power or
signals from the service unit, there are several paths that could lead to

this condition, Therefore; if visibility can be provided, manned‘ihteractive
support is definitely desirable but any improvement would be constrained
by the field of view, \

In summary, for Event 1. 1, Catastrophic Collision, the vast
-maJorlty of failure conditions could be monitored -and controlled automa.t1ca11
and the active participation of man is not required, However, there are a ‘
few unique situations indicated where, if man's intelligence could be e'mp-l'o_ﬂre
it might be possible to avoid loss of a vehicle and/or loss of a payload; =

but the remaining trees deserve attention before taking a firm position,
'Figures 4-5, 4-6, and 4-7 address the next major event leading to h
- failure of the servicing mission. Thig is failure to rendezvous and dock,
Block 1.2, In this series of events and conditions, the possible loss of a
vehicle or payload is not a point of consideration. The loss, if it occurs,
is a cost impact only and therefore the question of active manned support.
must be considered in a different light than in the previous conditional block
It is recognized that some of the failures that could prevent rendezvous and
docking could also prevent recovery of the upper sta.ge but these are not
peculiar to servicing and hence are not considered heére, If manned
interactive support were justified for other reasons, the point becornes
academic for servicing. This p031t1on appears remote, however, because .
current operations are being performed satlsfactorﬂy without the add1t1onal
cormplication of man-in-the-loop., It can be expected that this trend will-
continue unless some unique function such as space servicing breaks th1s

barrier and requires a new approach,
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Block 1.2.1, Tug Fails to Rendezvous, is structured around Tug
or upper stage su‘bsystems and equipments, There are no umque requn’e- -
ments identifiable; however, this tree could help in the selection of _
redundancy criteria to assure that rendezvous is successful, Block 1.2.2,
Service Unit Fails to Dock, is also relatively simple. Electrical failures -
are straightforward and simple redundancy can be employed to achieve a
desired level of reliability. Mechanical failures are a little more difficult.-
The docking mechanism (in this case a probe) could fail to dock properly .
for any one of several reasons, It would be necessary to have a detailed
design in hand to progress any further; but in general, it is assumed that
at the time of engagement an electrical drive mechanism performs the
-snubbing action, 1,2,2.1.1. 3. Pneurnatlc or hydraulic drives could
also be employved with then' own umque failure characterlstlcs ‘but the-
tree would be unaffected. The point is that there is a branch from which -
the failure path could develop and it should be recognized.

If these failures occur, it might be possible to recycle and try-
again. This could easily be automatic or be initiated by a ground command '
based upon telemetry data, As mentioned before, if the field of view is-
sufficient, it might be possible to examine the docking device by TV and
determine if successive attempts should be continued. This approach 1s
deemed to be highly impractical because the docking mechamsm may be ‘
at the periphery of the service unit, similar to the pemmeter locks,
requiring a broad field of view., It may be possible, again with fibre :
optics or some other device, to perform an inspection, but at this point
it does not appear very practical., The systems will have to be reliable, = -
with adequate safeguards and automated backout procedures whether or not -
man is involved. ' ‘

Active manned support does appear desirable for Block 1.2, 3, Pay- ‘
load Fails to Respond, The original failure of the payload that precipi‘tate‘d

the servicing mission could impair a proper response to ground commands

4.13



in preparation for docking. Adequate redundancy can be provided in the
payload to minimize the failure to reposition the payload (1.2,3.2),
However, if the failure did occur, adequate warning should be available
via telemetry to indicate the payload did not respond to the repositioning
command. and therefore the hazard would be minimized., Reorientation

to a false attitude presents a different problem. Several failures could
lead to an erroneous position while at the same time indicating via
telemetry that a proper attitude had been achieved. The same could be
true for Block 1,2,3.1, Failure to Retract Appendages., There are
obvious failure conditions which could indicate a ''go' condition when in
fact, docking should be avoided. The wide variety of payloads to be
serviced complicates this point further, in that there may be no standard
response, This inconsistency could easily lead to incorrect interpretation
if telemetry data is the only source of intelligence. Active manned support
appears therefore to be very desirable,

The failure of servicing operations per se are addressed in
Figures 4-8, 4-9 and 4-10. There are several failure modes of the
service unit that could lead to a hang-up of some kind. In general, there
is no requirement for visual support but a command override capability
is definitely needed. In most conditions, the action would be merely to
recycle all events or switch to a redundant element., A large part could be
easily automated but potential obstructions in gearways and guideways
could require reordering of what might have been an automated sequence,
Manned support is therefore desirable, but visual contact is questionable,

The final tree of this study addresses the inability to undock from
a payload after servicing has been performed, Figure 4-11, The payload
is essentially dormant, otherwise, docking could not have been performed
initially, Consequently, the payload does not enter into this fault tree,
There are failures which could definitely require unique sequences of

operations for the service unit to extricate itself from the payload,
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A similaf command override capability is desirable for upper stage
failures that could preclude the undocking action., Visual observation is
desirable, but it is difficult to conceive of an approach that would afford

the proper visibility. In any event, the uniqueness of the situations seem
to dictate the need for active reasoning by the operations center, even if the
input intelligence is limited to telemetry data,

This completes the development of the fault tree founded upon a
top event of "Servicing Mission Fails, ' The sub-branches are reasonably
complete for addressing the question of manned interactive support for
space servicing, The trees could be expanded further and reliability data
incorporated to derive redundancy requirements. The need for redundant
elements is obvious from examination of the trees,in many instances even
without statistical data. However, it is extremely difficult to estimate
man's contribution to the reliability of the total system. Consequently,
it was not attempted for this effort. Instead, experience and prudent
judgment have been employed to arrive at what should be recognized as
reasonable conclusions for the task at hand., The results and conclusions
are presented in the next section. Further clarification of each block of

the tree is provided in the hazard analysis, presented in the Appendix.
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5. RESULTS AND CONCLUSIONS

Looking at the total problem of épace -servicing contingencies, it
is now possible to draw certain conclusions. These must be considered in
light of the fundamental assumptions presented in Section 2. Although a
firm definition of the hardware and operational approach is not available,
it is shown that a review of this type can aid in the process of developing

program requirements, Therefore, the following conclusions are provided,

5.1 HARDWARE DESIGN

There were no significant hardware design problems exposed. This
includes consideration of the upper stage, the service unit and the payloa&.
Space servicing does not appear to push the state of the art and, in fact,
the maJorzty of operat:ons can be automated in the same manner as existing

operatlonal programs of today.

5.2 REDUNDANCY LEVELS

The levels of redundancy for the upper stage and service unit need
to be carefully reviewed. Current design approaches for the upper stage
in general provide little redundancy due to the desire to minimize inert
weight, However, the Shuttle upper stage will be required to perform
missions wherein high cost payloads and operations are involved, This
analysis indicates several areas where redundancy should be considered to
support space servicing. The navigation computer or its elements, the
command receiver and transmitter, and interface signals with the service -
unit should be redundant, to identify a few of the areas of concern,

The service unit should have redundancy in all mechanical/electrical
components. The weight penalty should be small. The potential problems
associated with drive systems for indexing and translating SRUs cannot
be allowed to hang up the units midway in the process. Some means must
always be available to back out of this type of situation. The rendezvous

laser and video camera may not have to be redundant, Since they provide



alternate paths to accomplish the mission, it may be possible to get by
with single units, However, thorough reliability analyses should be
performed. Redundant power supplies and power distribution are a must.

Failure of these elements could be catastrophic.

5.3 MANNED INTERACTIVE SUPPORT

In light of the several conditions exposed by the fault tree, it is
recommended that active manned support be provided for the servicing
operations, Basic upper stage and service unit operations should he
automated to relieve the ground of any heavy support requirements,
However, one man, supported by telemetry data, should have visual contact
with the payload at all times during the docking maneuver. He should also
have the command authority to override and alter automated sequences,
This should not pose any serious technical problems and the recurring
cost at the mission control center should be very minimal., The advantages
of man-in-the-~loop are limited and should be considered objectively, The
required hardware will inherently increase the design complexity. It
will alsc reduce the mass fraction. Also, it may not provide any real
improvement for the payload. If the payload has failed in a manner that
precludes servicing, then the best that can be hoped for is to not lose the
upper stage while trying to perform servicing, Visual contact can help
in this case, SRU replacement procedures can be readily automated and
the contingencies that could evolve would probably not be enhanced by the
visual monitoring system. An alternate fibre optics approach might
prove otherwise and deserves further consideration. A command override
capability is required to restart, reverse, or alter the sequencer, The
sequencer could be a small computer with redundant logic and input/output
channels, The hangup, if any, will probably occur not in the sequencer,
but in the various drive mechanisms, For this reason, whatever design
is selected, every effort should be made to minimize the number of
motions required to replace SRUs,



5.4 PAYLOAD FAILURE ISOLATION

Finally, it is important to emphasize that failure identification
must be positive and absolute prior to initiating a service flight. This
is the responsibility of the payload user, The failure need only be
isolated to the SRU level, but it also must be known if more than one SRU
should be replaced. Therefore, it may be possible to reduce the level
of telemetry to be transmitted to and analyzed at the payload operations
center, An in-depth study should be performed on this subject. Obviously,
replacing the wrong SRU would be embarrassing and costly, However, there
is also a history of instrumentation sensors providing false warnings
resulting in unnecegsary equipment changes. Therefore, a reduction in
telemetry should be favorable if the proper information is available for
positive isolation to the SRU level,

In summary, it should be stated that every effort was made to be
objective with this analysis. There are obvious advantages of manned
interactive support, but there are also obvious disadvantages. Space
‘servicing is & complex operation, but on the other hand, the potential
cost benefits indicate that this direction should continue to be pursued

and developmental programs instigated,
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APPENDIX

SPACE SERVICING
HAZARD ANALYSIS



1-v

1.0 Geésynchronous Operations Only

HAZARD RANK=

BLOCK : EQUIPMENT -
NQ. BLOCK TITLE FUNCTIONAL DESCRIFTION HAZARD DESCRIPTION INTERFACES i 2. 3 ob 4 5
1.0 Service Mission] A service mission includes four Any action, or lack of action, Tug NfA NITA HAA [ NSA| NfA
Fails elements for consideration: which prevents a successful Service Unit

: service mission is considered to | Payload
LI,' gﬁz :‘:Ev?:‘:usﬁft (su) be a hazard. These have been MGCC
' grouped into the following MSFN

3. The payload; and,
4. The mission control center (MCC)

Failure of any one or more of these
elements can lead to a failure to
perform servicing. Failure to per-
form servicing resuits in a cost
increase either because the service
capability is forfeited or as a mini-
mum it must be repeated,

{For the purpose of this study, the
NASA Full Capability Tug has been
assumed to be the Shuttle upper
stage. )

conditions:

1, Catastrophic collision

2. Failure to rendezvous & dock

3. Failure of servicing; and,

4, Service complete but failure
to undock,




Collision Occurs

1.1 Catastrophic

HAZARD RANK:

BLOCK] EQUIPMENT
NO, .BLOCK TITLE FUNCTIONAL DESCRIPTION HAZARD DESCRIPTION INTERFACES 1 2 3 4
1.1 Catastrophic Any actien resclting in physical ¢contact |1, Inadvertent physical contact Tug X
Collision Occurs |between the various elements other may puncture a Tug propellant Service Unit
than the planned docking mechanisms tank or sensitive equipment Payload
is considered to be a catastrophic package preventing the Tug from MCC Command
collision. The three elements involved |continuing the mission. and Control
are. 2. Inadvertent physical contact of Pagload Us:ier d
1. Tug the service unit could displace the Con;ma;n an
2, Service Unit SU relative to the Tug, preventing ontro
3. Payload subsequent rendezvous with the
Shuttle,
3. Inadvertent physical contact
with the payload could resalt in
permanent damage to NRU's or
cause obstructions which prevent
SRU replacement, terminating the
use of the payload.
1.1.1 Tug Fails Tug does not perform correctly within Tug systems fail to respond to ACS X
defined constraints and inadvertently commands, thereby losing Power
impacts on payload control of the vehicle Rendezvous
Sensors
Comm
1.1.1. 1| Tug Subsystems |Failure of Tug subsystems can result Subsystem failures involved with ACS X X
Fail in a catastrophic collision if, and only |terminal phase rendezvous Power
if, the Tug is on a collision course. including possible inadvertent Rendezvous
command inpuats. Sensors
Comm
1.1.1. {Collision course [Normal operation requires Tug Main propulsion has long burn, ACS X
1.1 insertion to occur below and behind the Navigation sensor errors Main Propulsiol
payload. Improper insertion could g ) System
place the Tug on a collision course. Thrust attitude bias G&C
. Comm System
Computer errors or improper
updates.
1.1.1, |Attitude Three axis stabilization is required for | Proper alignment at impact cannot | G&C X
1.2 Stabilization this terminal phase rendezvous, be maintained. Power fails
Fails including attitude hold during thrusting. Proper closure delta V cannot be Comm Sys.tem
L {Ref plattitude)
maintained. RCS fails - off
or on

{1) UNLIKELY TO OCCUR
{2) WORK AROUND APPARENT

(3) SIMPLE REDUNDANCY

{4) COMPLEX REDUNDANCY REQ,

{5) MANNED INTERACTION REQ.




1.1 Catastrophic Collision Qccurs

HAZARD RANK:

BLOCK EQUIPMENT
NO, BLOCK TITLE FUNCTICNAL DESCRIPTION HAZARD DESCRIPTION INTERFACES 1 2 3 4
1. 1.1 Attitude Bias Proper attitude hold i5 required for tLaser fails to lock on PL and Tug Attitude X X
1.2.1 Errors laser radar search for PL acquisition is on collision course, or impropey control '
and final docking action. attitude at docking results in system
premature impact. Comm system
1. 1.1, |PL Reference The payload is commanded to a Failure to achieve proper Comim X
1.2,2 Attitude Error reference attitude for docking prior to positioning may result in impact system
power down. This reference must be with structure other than the Payload ref
input to the Tug for proper positioning, |docking mechanisms :
1.1, 1., |Nonresponse Attitude control system must respond Loss of stability of Tug with . Attitude X
1.2.3 to error inputs to maintain stability resultant loss of laser lock and control
possible impact. system
1.1.1. {Tumbles Tug Failure could result in tumbling motion |If tumbling occurs after final Attitude X
1.2.4 of Tug. closure is initiated, collision control
could result, system
1. 1.1, |Navigaticon Navigation system must maintain Errors of the Nav system can Nav sensors X
1.3 System Errors [proper terminal phase velocity vector, |result in high velocity impact or Nav computer
including standoff maneuver, failure to perform standoff, Power fails
Hazard exists if, and only if,- SU Interface
: MCC comm
backup ground command does not link
function properly. :
1.1.1, |Communication |Comm system provides backup to Nav Fail to receive commands negates | SU signals X
1.4 System Fails system by TM of ranging signals as backup capability. Command
well as use of TV when in range. Inadvertent action could override receiver/
Nav systermn commands decader
- ) MCC input
commands
Power
1.1.1, |Propulsion Fails|The ACS is used for Tug translation Failure could result in low velocity] ACS |
1.5 to Stop Tug contrel and is required to establish impact with bounce and rotation Power

the proper closure velocity {%1 fps)

of PL. High velocity impact could
damage docking system or PL.,

Nav system

{l) GNLIKELY TO OCCUR
(2) WORK AROUND APPAREXNT

(1) SIMPLE REDUNDANCY

(1} COMPLEXN REDUNDANCY REQ.

(3} MANNED INTERACTION REQ,
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1.1 Catastrophic Collision Occurs

HAZARD RANK®

BLOCK EQUIPMENT
NO. BLCCK TITLE FUNCTIONAL DESCRIPTION HAZARD DESCRIPTION INTERFACES P ]2 314 5
I.1.1. fFails On ACS propulsion is required for positive |Fail on condition can force high ACS X
1.5.1 control of relative motions between Tug |impact velocities. Fail off can Power
& and payload fail to break relative velocities. GkC signal
1.1, 1. [Fails Off interface
1.5.2
1.1.1, 1Tug/Service Unit|Rendezvous and docking data as well as [Tug interface connections fail to Service unit X
2 Interface Signals [sequencer signals must be relayed pick up or inadvertently pick up Interface
Fail across the service unit/Tug interface. sensor signals from SU connectors
1.1.1. JLaser Ranging [Laser ranging signals are required by |Intermittent or complete loss of Service unit X X
2.1 Signals Tug navigation system to perform signals can result in loss of Tug Interface
Errcneous terminal phase maneuver velocity control and standoff connectors
maneuver
1.1.1. |Power System |Failure of these items results in loss Loss of Tug velocity control Service unit X | X
2,1.1 Fails of laser data on the Tug side of the Interface
& or interface connectors
1.1.1 Sensor Fails and sensors
2.1.2
1l.1i.1. |PL/SU Interface {The docking switch is required to Failure to receive signal can Docking X | x
2.2 Switch Fails ghut down Tug rendezvous action once result in continued thrust by Tug, probe /drouge
a latch up has been achieved. imposing high g loads on payload switch
with resultant collapse of SU power
appendages. SU sequencer
1.1.1. |TV System Fails [Visuval Inspection by use of TV is Failure of TV can lead to Tug TV sensor X X
2.3 required during standoff to assure impact of PL structure if payload MCC comm
removal of all obstructions. -jcormmands fail to retract link
appendages. Power
1.1.1. |Power, Lights |[These items are required for use of the |Improper action could lead te TV sensor X{x
2.3.1 or Sensor TV by MCC. I natural lighting impact of PL structures MCC comm
1.1 Interface conditions warrant, aux lights can be link
2: 3 2 |Signals Fail removed Power
i.1.1
2.3.3

{4) COMPLEX REDUNDANCY REQ.

(1) UNLIKELY TO OCCUR
{5) MANNED INTERACTION REQ,

{2) WORK AROUND APPARENT
(3} SIMPLE REDUNDANCY



1.1 Catastrophic Collision Occurs.

HAZARD RANK=

Frame

correct configuration to allow docking
to occur.

an unsatisfactory configuration
to support servicing

interfacesn

BLOCK EQUIPMENT -
NO. BLOCK TITLE FUNCTIONAL DESCRIPTION HAZARD DESCRIPTION INTERFACES I Fs 314 {5
1.1.2 Payload Fails The payleoad must perform certain Payload will not be in proper Payload X
functions in order that servicing can be | configuration to suppprt docking subsystems
performed. Isolation of the failed which could lead to a'loss of the User command|
module is assumed to occur prior to payload, a loss of the Tug, ora control link
the need for servicing. This failure loss of the service unit
could manifest itgself in disallowing the '
required functions to be performed
rl. 1.2.1 ] Fails to Power | The payload is to power down prior to | Attitude control will be active at Payload X X
. Down docking to prevent a reaction to the the time of docking. Inadvertent command
docking/servicing action. commands may be transmitted link
by command/receiver, and
power must be removed from SRU
to prevent arcing during change-
out/ replacement
1.2, Disturbance The payload must hold a constant If a distrubance occurs after Power system X
.1 Occurs and attitude relative to the Tug within +5° power down, the relative Comm system
& . to assure proper probe and drogne” attitude error can exceed limits
1.2, PL Fails to contact. leading to structural impact,
7 .'J'> ‘2 Respond :
hd .1.2.2 | Structural Payload structural failures due to Structural interference between PL X
Failure of PL -mechanical or presaure vesselfailures | Tug/SU and PL leading to appendages
may result in unpredictable structural damage of all three or Comm system
obstructions in the docking path entangiement leading to loss of allf Power system
three vehicles.
1.2, Unwanted Obstructions may result from failure Obstruction of docking mechanismg PL pressure X
.1 Obstructions of appendages to retract or a shift in or failure to allow latch up due vessels
1.2.2. in ) an SRU position due to the explosive ‘te SRU displacement PL
: 1 Docking Path nature of adjacent pressure vessels, appendages
&
.1.2,2,
.2
j. 1.2, Distorted PL The payload frame must maintain the Structural failures can result in PL physical X

{1} UNLIKELY TO OCCUR
{2) WORK AROUND APPARENT
{3) SIMPLFE. REDUNDANCY

(¥) COMPLEX REDUNDANCY REQ,
{(3) MANNED INTERACTION REQ,
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1.1 Catastrphic Collision QOccurs

HAZARD RANK®
BLOCK . EQUIFMENT
NO. BLOCK TITLE FUNCTIONAL DESCRIPTION HAZARD DESCRIPTION INTERFACES 1 2 3|4
1.1.2, |Launch, The PL is designed to withstand specific |These hazards, if not properly PL physical X
2,2.1 Thermal or environments for deployment and recognized, could result in a interfaces
1.1.2 Explosive subsequent operation distorted spacecrait, requiring, Pressure
"o 5" IEnvironment but not allowing, servicing. vessels
2.2.2
Thermal paths
1.1,2,
2,2.3
1.1.2.3]Fails to Retract {All appendapges such as solar panels, Appendages may cause structural Comm system
Appendages antennas, sun shades must be out of impact. Positive identification Power
the line-of -approach of the Tug. If such |of retracted position may be lost SRYU interfaces
items are not norrmally clear, a due to position switch failure.
command must be issued to clear the
PL configuration for docking.
1.1.2. }Appendage All appendages must be retracted clear |The hazard occurs if, and only Power
3.1 Obstructs Dock |of line-of-approach. (Structural if, obstruction exists and the Comm system
Side and failure of payload itself is covered in retraction rmechanixm fails to S5RU interface
1.1.2 i A 1
3.2 tructural 1.1.2.2) fanction correctly
1.1.2. Mechanical
3.3 or
or .
1.1.2. Electrical
3,4 Failures
1.1,2, [Fails to Orient [The payload is required to orient itself {Improper orientation, if unknown, | ACS X
4 : to admit the service unit docking will lead to structural impact of Power
mechanism,. the 50U and the PL. Comm link
1.1.2, |Failure to The command to reorient the PL Improper orientation leading to Power X
4.1 Receive Commandattitude for docking will be given by structnral impact. ACS
and and Failure of the user ground station after the Tug SLC
1.1.2. |ACS insertion maneuver.
4.2
1.1.2. 4| Power These subsystems are required to Improper orientation leading to Comm system X
2.1 perform the reorientation maneuver. structural impact.
Command is issued by user through
1.1, . . :
2 3 2. 41 ACS coordinarion with MCC
* and
1.1. 2.4,
2.3 S&C system

(1} UNLIKELY TO OCCUR
{2) WORK AROUND AFPARENT

{3) SIMPLE REDUNDANCY

{4) COMPLEX REDUNDANCY REQ.

{3) MANNED INTERACTION REQ.




l.1 Catastrophic Collision Occurs

Ak

HAZARD RANK=*
BLOCK EQUIPMENT
NO, BLOCK TITLE FUNCTIONAL DESCRIPTION HAZARD DESCRIPTION INTERFACES 1]z 3 {4 5
1.1.3 Service Unit The service unit consists of indexing Structural, mechanical or Tug interfaces X
Fails and drive motors for remove/ electrical failures of the service Power system
replace SRU!s as well as the unit can result in unwanted Sequence
rendezvous sensors and docking structural impact with the payload | Payload
mechanisms, interfaces
1.1.3.1 |[Structural The service unit must be capable of The docking surface is not planar Structural X
’ Failure of servicing launch and orbit transfer to mate with the payload interfaces
Service Unit without serious distortion S5RU to base-
plate interface#
1.1.3. |Distorted The frame and SRU positions must Distorted from, or SRU impinges SRU and X
1.1 Frame or remain within tight tolerance to prematurely on payload with structural
or SRU displace- Prevent interface problems with the resultant structural interference interfaces
1.1.3. ment from payload which could negate undocking
1.1 Mount
1.1.3.2 |Docking Sensors {The docking sensors provide the data to Lack of signal or inadvertent Tug/SU X X
Fail the Tug mavigation and control system error signals may result in the Interfaces
pnd the comm system for relay to MGC. | service unit {with Tug} impacting Power
the PIL at excessive velocity. Laser
TV
1.1.3 Laser Radar The laser radar is the primary source Loss of laser data will result in Power X X
2.1 and of data for rendezvous, with a TV impact if and only if, the TV Tug/SU
and TV Camera system as backup when approaching system is also inoperative. Interface
1.1.3. (with lights) he PL Laser
2.2 r TV
1.1.3, Service Unit he power supply and power regulation Failure of power makes all SU Power X
2. 3 Power Supply upply the input power to operate the -sensors inoperative and terminated SU Sensors
rendezvous sensors. steering signals across the Sequencer
interface which could cause impact
1.1.3,3 |Tug Electrical |Electrical connectors are required at Failure of these interfaces Power X
Interface Fails fhe service unit interface with the Tug. results in loss of sensor data to SU Sensors
the Tug Nav and control which Sequencer
could cause impact.
1.1.3 Laser Loop [The laser and TV are required for The hazard exists, if and only if, | Laser X X
3.1 Open  and terminal rendezvous providing steering | both sets of sensor data are lost TV
and TV Signal Loop finformation to the Tug. and a relative delta V exists Lights
1.1.3. | Open between the Tug and PL, Power
3.2

(1) UNLIKELY TO OCCUR
(2) WORK AROCUND APPARENT

(4} COMPLEX REDUNDANCY REQ,

(3) SIMPLE REDUNDANCY

(5) MANNED INTERACTION REQ,
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1.1 Catastrophic Collision Occurs

HAZARD RANK™

BLOCK EQUIPMENT
NO. BLOCK TITLE FUNCTIONAL DESCRIFTION HAZARD DESCRIPTION INTERFACES 1 21314 5
1.1.3,4]|Oversize SRU Oversize SRU's may be carried on the [Failure of SRU to reposition SRU X X
Fails to service unit requiring part of the SRU  [could result in structural damage interface with
Position {antenna) to be folded in froat of the of entanglement 5U
SU. This 5RU will be commanded to Sequencer
a clear position prior to docking. Power supply
1.1. 3. |Sequencer This item must function as planned to Failure to respond or over Sequencer X
4,1 Power remove SRU obstruction prieor to positioning can lead to a Power
1.1.3 or docking. structural impact or entanglement | Physical
4' 2' Mechanical
: Failures
or
1.1.3.
4.3

(1) UNLIKELY TO OCCUR
(2) WORK AROUND APFARENT

(4) COMPLEX REDUNDANCY REQ.,

(3) SIMPLE REDUNDANCY

{(5) MANNED INTERACTION REQ.
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1.2 Failure to ‘Rendezvc:us and Dock

HAZARD RANXK®

BLOCK EQUIPMENT
NO. BLOCK TITLE FUNCTIONAL DESCRIPTION HAZARD DESCRIPTION INTERFACES ! 2] 3 -+ 3
1.2 Failure to To perform a service mission it is Failure to rendezvous and dock Tug X
Rendezvous and (necessary for the Tug/SU to hard-dock lleads to a failure of the servicing Service Unit
Dock with the payload to exchange SRUs. mission. Failure may be caused Payload
‘ by the Tug, service unit, or the MCC
payload.
1.2.1 Tug fails to To perform rendezvous it is necessary [Failure of the Tug to perform any Tug X
rendezvous for the Tug to insert near the payload, of these functions will result in 5U
acquire the payload to measure relative [failure to perform servicing. Payload
motion, and perform the terminal phase MCC
maneuver.
1.2.1.1Tug fails to get |The insertion maneuver is to place the |Failure to insert properly may Tug Main X
into range Tug below and behind the payload. result in the laser system not " Propulsion '
acquiring the payload. Syatem
NAV System ™
1.2, 1. - [Navigation sys- |All systems must function properly Failure of subsystems or the main| Tug Main X X
t. 1 tem fails for the Tug to perform the insertion propulsion will result in improper | | Propulsion *
or or maneuver. insertion maneuver with resultant | NAV Syastem ~
1.2. 1. - IMain propulsion loss of the servicing mission. All Subsystems
1.2 fails
or or
1.2, 1. - [Tug subsystems
1.3 fail
1.2.1.2 }Tug in range After insertion the Tug must continue If, after inserting within range of SU Interfaces X
but fails to to respond to steering commands acting |the payload the Tug fails to respond Tug Systems
respond through the ACS system. This system [to further commands, the mission Tug ACS Sys-
provides control of alil degrees of ig lost. fem
freedom. -
1.2. 1~ |Navigation The navigation system develops all Failure of the NAV system outside | Tug X
2.1 system failures |commands in a closed loop manner to of visual (TV)} range disallows Service Unit
control the Tug to rendezvous and dock. |performing the terminal phase ' _Sensors
rendezvous Tug/SU Inter-
face 7
i.2.1- {(Fails to lock on- [The laser radar must lock onto the Failure to acquire the payload Laser X.
2. 1.1 lte payload (140 {payload to obtain ranging information. disallows the TPI maneuver Power
sec scan) Interface

(I) UNLIKELY TO OCGUR
(2) WORK AROUND APPARENT

{14) COMPLEX REDUNDANCY REQ,

{3} SIMPLE REDUNDANCY

{3} MANNED INTERACTION REQ,
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1.2 Failure to Rendezvous and Dock

HAZARD RAXNK

EQUIPMENT

BLOCK
NO, BLOCK TITLE FUNCTIONAL DESCRIPTIOXN HAZARD DESCRIPTICON INTERFACES 2 R 3
1.2.1- |Laser and TV The laser and TV require power from |Failure of either sensor or the Laser X
2.1- fail the service unit to function and the power supply or data leads will v
1.1 signals to the Tug are passed through {result in loss of miasion, Power
and interface data lines. Interconnects
1.2. -
2,1-
1.2
or
1.2.1- Jor SU power
2.1-
1.3
or
1.2. 1~ Jor interconnects
2.1~ fajil
1.4
i.2.1- [Locks on The laser must lock on the payload If the laser locks on some part of Laser %
2.1.2 jerroneocusly corner reflectors to obtain proper the payload other than the corner Payload Corner
ranging information. reflectors an improper return Reflectars
. will be received indicating a
different range. The Tug will not
be able to close on the payload.
1.2.2 ervice unit Docking mechanisms are contained Failure of the docking mechanisms| SU Probe X | X
fails to dock within the service unit, consisting of {prevents SRU changeout and FL Drogue
a probe and locking latches. causes the mission to fail. Docking Latche}
Inhibit
" Switches
t1.2.2.1 [Mechanical Mechanical latches are required for Mechanical failures may not allow Power X
failures a positive and hard-dock, matching a hard-dock, causing interference Physical
all interfaces accurately. with the indexing and positional
mechanismas.
1.2.2- {Probe fails to The probe inserts and locks inside Failure of the locking latches S5U Probe X X
1.1 tock the drogue and then snubs up the pay- |prevents the snubbing actions, ne- | Drogue
load to the service unit. - gating servicing. Power

(1) UNLIKELY TO OCCUR
{2) WORK AROUND APPARENT
(53 SINMPLE REDUNDANCY

(4} COMPLEX REDUNDANCY REQ,

{3} MANNED INTERACTION REQ.
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1,2 Taijure to Rendezvous and Dock

HAZARD RANK
BLOCK : EQUIPMENT -
NO. BLOCK TITLE FUNCTIONAL DESCRIPTION HAZARD DESCRIPTION INTERFACES I ks 3 4 S
1,2, 2- Damaged Both probe and drogue must be aligned | TFailure of these items will Probe X X
t.1.1 Probe properly. The electrical drive for prevent a hard dock, disallowing Drogue
or or disengagement and snubbing must also servicing. Power
1.2,.2- Damaged be inhibited,
1.1.2 Drogue
or or
1.2.2- Electrical
1.1.3 Failure
1,2.2, 2] Electrical The SU Electrical System provides Failure of the electrical system SU Power X
Failures power to snub, latch, index, and disallows SRU changeout. SU Sequencer
change modules, all controlled by a
sequencer,
1.2 2- Sequencer The sequencer and main power supply SU cannot index and perform SU Power x
2.1 Fails are required to perform the service module changeout or unlatch 5U Sequencer
or. or - function.. with PL,
1,2, 2- Main Power
2,2 Fails
1.2.3 Payload Fails The paylead must be placed in the Failure to do negates rendezvous PIL. ACS X X
to Redpond proper configuration to allow docking due to structural inter- Systemn -
rendezvous and docking, ference and attitude differences. PL Comm
: " System
"PL Power
~ System .
1.2.3,1] Fails to Appendages that will obstruct the Failure to do so will result in PL Power X X
Retract Append.] docking line of approach must be physical impact or cancellation Physical
1.2.3- Mechanical retracted. ' of docking maneuver at stand off, |  Interfaces -
1.1 or
or Electrical
1.2.3-
1.2
1,2.3.2 ) Fails to alter The payload must assume the proper Failure to reorient can result PL ACS X
attitude attitude for docking and once achieved in failure of laser lock-on or PL comim.
this information should be relayed to improper lock-on and subsequent Systern
the Tug to proceed, impact. PL Power
PL G&C

(1) UNLIKELY TO OCCUR
{2) WORK AROQUND APPARENT
() SIMPLE REDUNDANCY

{4) COMPLEX REDUNDANCY RFQ.
{(3) MANNED INTERACTION RFQ,




AR 4

1.2 Failure to Rendezvous and Dock

HAZARD HANK

stand-off maneuver will identify
if appendages have been
retracted.

BLOCK EQUIPMENT
NQ. BLOCK TITLE FUNCTIONAL DESCRIPTION HAZARD DESCRIPTION INTERFACES | 3 | 4 5
1.2.3- ACS Fails or The subsystems must function as Failure of any one of these will PL ACS X
2.1 Attitude Ref, planned to assure that payload result in failure to reorient PL Comm,
or Lost assumes the proper docking position. for docking, PL Power
1.2.3- or FL G&C
2.2 Cormm. System
or Fails
1.2.3- or
2.3 Power is Off
or
1,2, 3-
2.4
1.2.3.3] PL orients to The payload must not only be able to Failure to orient properly may PL G&C X X
wrong attitude alter attitude; it must also assume result in failure to allow PL Comm,
due to the correct attitude. rendezvous and dock, Failure
1.2.3- Attitude Ref, may occur due to bias error
3.1 failure or or commm, input error.,
or Comm, System
1.2.3- Failure
3.2
1.2.3.4] Fails to Payload must be powered down after Failure to do so could cause PL Comm, X
Power Down reorientation to prevent extrancous appendages to be extended, System
inputs which might alter the PL attitude to drift, etc., negating " Interface
configuration, docking. Switch
1.2.3- Comm. System| The comumunication system is the Failure of both sources is PL Comun. ¢
4.1 and primary source of power-down required to prevent power-down, Interface
and Drogue Switch command backed up by a drogue Appendage problems could still Switch,
1.2, 3- Failures switch, energized by the SU probe. exist but power would be off
4.2 during SRU changeout, The

{1) CNLIKELY TO OCCUR

i2} WORK AROUND APPARENT
Y SIMPLE REDUNDANCY

{+) COMPLEXN REDUNDANCY REQ.

{3} MANNED INTERACTION REQ.




£E1-v

1.3 Servicing Fails

HAZARD RANK
BLOCK EQUIPMENT
NO. BLCCK TITLE FUNCTIONAL DESCRIPTION HAZARD DESCRIPTION INTERFACES 1 2 i 4
1.3 Servicing Fails | Servicing relies primarily on the Failure of any'of the three Tug X
service unit for all sequencing and elements may lead to a failure Service Unit
changeout operations. The Tug of the servicing function, Pavyload
provides stability and the payload is
dormant,
1.3.1 Service Unit The service unit performs all latching, | Failure of any subsystems Power X
Fails indexing and SRU changeout, drive motors or structural Drive Motors
elements may result in failure Sequencer
of service unit, Latching
_Switcheas
1.3.1.1| Mechanical Major functions of the service unit Failure of the ring frame or Power X
Fallures are mechanical consisting of a gear jack screws may impart damage Drive Motors
driven ring frame and linear jack to the SU, SRU, or the payload, Sequencer
screw SRU change mechanism.
1.3.1- Circular Drive | Circular drive motors are engaged Drive motors may fail due to Power X
1.4 Motors Fail by the sequencer and energized to bearing heat up under heavy Sequencer
1.3.1- rotate the index ring clockwise or cycling or misalignment, or Limit Switche%
1.1.14 counterclockwise, limit switches fail closed, Drive Motors
1. 3.1~ terrinating action or fail open, (zame action
1.1,2 extending the rotation. Drive relates to
t.3.1- motors may also fail due to jack screw
1.1.3 overheating of their field, etc, motors)
1.3.1- Each of these actions could
1.1,4 result in failure to service
payload. ‘
1.3.1- Ram Drive These motors are engaged by the Failure of these motors may Power X
1.2 Motors Fail sequencer and energized to actuate prevent servicing or leave the Drive Motors
the SRU changeout ram, Limit ram in an extended position Limit
switches are used to indicate which may be hazardous to both Switches
extremes of position, the service unit and the Sequencer
. payload.

(+} COMPLEXN REDUNDANCY REQ.
(7)) MANNED INTERACTION REQ,

(1} UNLIKELY TO OCCUR
{2) WORE AROQOUND APPARENT
(4) SINIPLE REDUNDANCY
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1.3 Servicing Fails

. HAZARD RANK
BLOCK EQUIPMENT
NO. BLOCK TITLE FUNCTIONAL DESCRIPTION HAZARD DESCRIPTION INFERFACES [ i i
i.3,¢- Motor or Limit| Major functions of the service unit Failure of the ring frame or Power X
1.2.1 Switches Fail are mechanical consisting of a gear jack screws may impart damage Drive Motors
1.3.1- driven ring frame and linear jack to the §U, SRU, or the payload. Sequencer
1.2.2 screw SRU change mechanism
1.3.1-
1.2.3
1.3.1-
1.2.4
1.3.1- Ring Frame The ring frame has a large bull gear Hazards may result which jam Power X
1.3 Jams inner surface in which drive motors the ring frame, preventing the Sequencer
are engaged by a sequencer signal, gervicing operation. Drive Motors
The ring frame will be locked in
position during ascent phase of flights.
1.3.1- Launch Locks Launch locks must be released before | Hazards may result if launch Power X
£.3.1 Fail to Release| servicing can be performed, tocks do not release, if there Sequencer
1.3.1- or an Obstruc- | initiated by the sequencer. is mechanical damage, if the Drive Motors
1,3- tion is in Gear- sequencer signal fails, or if Structural
1.1 way an SRU fails and obstructs Failure
1.3.1.- movement,
1.3-
t.2 e
1.3.1-
1.3.2
1.3.1-
1.3-
2.1
1.3.1- Ram Mecha- The ram mechanism is engaged by the | If the mechanism does not Power X
i.4 nism Jams sequencer to remove and replace function properly the extended Sequencer
SRUs with limit switches at the ram may damage the payload, Drive Motors
extremities, service unit or SRUs, Limit
Switches
t.3.1-~ Inadvertent Engagement and energizing is Inadvertent actuation may bind Power X
1.4.1 Actuation performed by the sequencer. Align- up the service unit, damage an Sequencer
1,3.1- or Misaligment| ment is critical SRU or the payload. A mis- Drive Motors
1.4.2 of SRU alignment (due to sequencer or Limit
limit switch failure) may also Switches
cause structural damage and
interlock the payload and the
service unit.

t1) UNLIKFELY TO OCCUR

{(2) WORK AROUND APPAREXNT

P SIMPLE REDUNDANCY

(1} COMPLEN REDUNDANCY REQ,

(=) MANNED INTERACTION REQ.
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-1.3 Sexrvicing Failse

BLOCK EQUiPME™ ! Sk
NO, BLOCK TITLE FUNCTIONAL DESCRIPTION HAZARD DESCRIPTION PUTERE ACHs
1.3.1.2] Electrical Service unit power is supplied by Failures may result in failure Power
Faijlures batteries to the sequencer, motors, to actuate servicing or promote Sequencer
and rendezvous sensors, inadvertent actuation. Motors
Limit
Switches ;
1.3.1- Main Power Main power supplies all electrical Power failure may result in Power A
2.1 Fails, such as:|{ energy to service unit failures. initiating an action but failing Sequencer
1.3.1- Power to complete it with resultant Motors
2.1.1 Regulation or damage to the service unit, Limit
or Battery Fails paylead, or SRUs, Switches
1.3.1-
z2.1.2
1.3.1- Power Power distribution is through a cable If overload protection fails, a Powear:
2,2 Distribution harness controled by the sequencer motor {ailure could result in a Seqguencer
1.3.1- Fails, such as:| energized upon physical docking with hangup of the servicing unit. Motors
2,2.1 Overload Pro- | the payload, Also if the sequencer fails to Limit
1.3.1- tection Fails release inhibit functions for the Switches
2.2.2 | or Sequencer drive motors the servicing
Inhibit Fails cannot be performed.
to Release :
1.3.1.3] Sequencer The sequencer controls all functions Failure of the sequencer to Power
Failures for servicing, being energized by the issue signals when required or Interface with
docking limit switch or a cormmand issuing erroneous signals may Tug
signal through the Tug comm link. lead to disTuption of the Limit
servicing function or cause Switch Con-
physical damage or fail to trols
release the payload after servic-
ing.
Dock Probe The sequencer can be overridden by The hazards can exist, if and SU Power
1.3.1- Fails to ground command and through the only if the backup command Tug/SU
3.1 Initiate or Tug Command Receiver from MCC, fails to be received at the Interface
P.3.1- Sequencer Fails . sequencer. Sequencer failures Tug Cornrnand
3.2 to Issue Signals could leave SRUs in a half in- Link
t.3.1- or Sequencer half out condition, Failure of Tug Power
3.3 Issues Errone- the command systermn could occur
1.3.1- ous Signal and . if the Tug receiver failed or if
3.4 Comm System the Tug had a power failure or if
1.3.1- Fails or the interface connection were
3.4 Receiver Fails broken. ‘
1.3.1- or Tug Power
3.4.2 | Fails or Inter-
1.3,1- | face Connector
- 3.4.3 1 Fails

(1} UNLIKELY TO OCCUR
{2) WORK AROUND APPARENT
(3) SINMPLE REDUNDAXNCY

{4) COMPLEXN REDUNDANCY HEQ.
{3} MANNED INTERACTION REQ.
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1.3 Servicing Fails

FHAZARD RANK

BLOCK EQUIPMENT
NQO. BLOCK TITLE FUNCTIONAL DESCRIPTION HAZARD DESCRIPTION INTERFACES 1|z 3§
1.3.2 Payload Fails The payleoad must maintain a coplaner Any obstruction which could Physical X
to Respond interface with the service unit to allow | prevent snubbing or module Interface
servicing to be performed. | changeout, SU to
Payload
I
1.3.2.1] Mechanical The payload must maintain physical Structural damage could prevent Physical X
Interface tolerances such that SRUs can be module change, either by Interface
Failure removed and replaced, binding SRU or misalignment of SU to
ram mechanism, Payload
1.3.2- SRU Interface Alignment of the SRU must be main- Failure to maintain alignment Physical X X
1,1 Obstructions tained for servicing. The free slot in may result in loss of servicing Interfaces
1.3.2- Caused by the 8U must align with the failed functions. Also misalignments with NRU
1,1.1 Failed SRU or SRU and the replacement SRU must be | may result in force fits cansing
1.3.2- Interference lined up with the vacant payload slot. SRU to bind up between the SU
1.1,2 from Adjacent R and PL resulting in permanent
1.3.2- SRU Resulting entanglement, If an SRU is
1.1.- from Electrical fractured {failed structurally),
11 Connections or the attempted removal may cause
1.3.2,1] Binding of binding or damage to an adjacent
1.1.2 Guides or SRU in which case servicing
1.3.2,14 Fracture of a would be incomplete.
1.1.3 Component
1,3.2- NRU Interface The NRU consists of the basic Any change in the physical inter- | Physical X
1.2 Obstructions satellite framework and any other face of NRUs could prevent SRUs Interface
elements which are not replaceable, from being exchanged. with SRU
such as solar panels,
1.3.2- Cold Weld The SRU slides into the NRU on nylon Sliding surfaces may cold weld Physical X
1,2.1 or roller, spring loaded guides and is in space or be impaired due to Interface
or Thermal snubbed to the frame by the action thermal gradients. If this between SRU
1,3.2- Warpage of making electrical contact, occurs, servicing cannot be and NRU
1.2.2 completed and disengagement
may not be possible,
1.3.2.2] Electrical The payload is powered down prior No identifiable hazards present SU Docking X
Interface to docking. No power crosses the until after two failures. Hazard Probe
Failure interface. A backup power-down in the event two failures do PL Comm
switch is provided in the docking probel occur is only minor. System

in the event the command was not
previously received.

(1) UXLIKELY TO OCCUR

{2) WORK ARQUND APPARENT
{4} SIMPLE REDUNDANCY

(4} COMPLF:X REDUNDANCY REQ.

(3} MANNED INTERACTION REQ.




1.4 Failure to Undock

EQUIPMENT

HAZARD RANK

L1-V

Mechanical
Binding of SRU
Qccurs

BLOCK
NO, BLOCK TITLE FUNCTIONAL DESCRIPTION HAZARID DESCRIPTION INTERFACES l 2 3 -+
1.4 Failure to The Tug and Service Unit must be Failure to undock may result in Tug X
Undock capable of undocking with the payload loss of the payload, Tug and Service Unit
te continue the mission. service unit, Payload
1.4.1 Service Unit The service unit sequencer signals the | Failure of the SU to perform its Tug X
Fails Tug when servicing of a particulat functions to disengage may lead Service Unit
payload has heen completed, This to loss of all three elements, Payload
releases all latches and causes the Sequencer
“Tug to perform a stand off maneuver, Docking
’ ‘ Latches
1.4.1.1] Mechanical All docking and latching mechanisms Failure of latches or mechanical SU Power X x
Failures as well as drive motors are grouped drives may prevent complete 8U Sequencer
into this catogory: disenpagement of the SU and Latches
! : payload. Limit
Switches
1.4,1- Docking Latcheq Docking latches are released by an Hazards can develop if any one 53U Power X X
1.1 Fail to Release | electrical drive actuator signaled of the latches fails to release. Sequencer
1.4.1- Because Phys- | from the sequencer. The latch Failure of the electrical signal, Latches
1.1.1 ical Rinding retracts to its stops, returning the or the actuator may occur, or Limit
or Occurs or signal to the sequencer, if structural warpage is present Switches
1.4.1- Actuators Fail a physical binding may result, -
1.1.2
1.4.1- Service Ram The service ram (jack screw} extends Failure of ram in an extended SU Power X
1.2 Fails to past the interface with the payload, position will not allow indexing SU Sequencer
1.4.1- Retract The drive motors are cngaged by a of the ring frame without damage Limit
1,2.1 Because Drive signal from the sequencer. The ram to the PL and 8U. Switches
1,4,1- Motors Fail retracts the failed SRU from the Drive Motors
1,2.2 | to Operate or payload and inserts a new unit,
t.4,1- Limit Switches
1.2.3 Fail or

{1} UNLIKELY TO OCCUR
(21 WORK AROUND APPARENT
CHSINPLE REDUNDANCY

(1) COMPLEXN REDUNDANCY REQ,

() MANNEDR INTERACTION RECG,
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1.4 Failure to Undock

HAZARD RANK
BLOCK EQUIPMENT
NO. BLOCK TITLE FUNCTIONAL DESCRIPTION HAZARD DESCRIPTION INTERFACES 1 2 i H
t.4. 1. 2] Electrical All latching, indexing, and replacements Failure of electrical power will SU Power X
Failures of SRUs requires electrical power. prevent the SU from releasing thq SU Sequencer
payload, resulting in payload, Limit
85U and Tug loss " Bwitches
Drive Motors
1. 4. 1- | Power Supply Electrical power is required inter- Power loss results in all drive 5U Power X
2.1 Fails, 4 Results |mittently to undock with the payload. motors and latches remaining SU Power
1.4.1- }in Loss of All in position when power failure Distribution
2.1.1 |Drive Motors - accurs. Results in loss of PL,
1.4. 1. {or All Latch 53U, and Tug.
2.1.2 | Actuations
1.4.1- |Sequencer Fails | The sequencer performs a key function Loss of power results in loss of SU Sequencer X
2.2 Resulting in Loss|of managing all activities of the sequencer operation which pre- 5U Power
1.4.t- [of Tug Activation| service unit except where override vents undocking with the payload.
2.2.1 jor Inadvertent commands are issued by MCC.
1.4.1- 18ignal to Redock
2.2.2 |or Failure to
1.4.1- |8ignal Latches
2.2.3 Jand Motors
1.4.2 Tug Fails Upen receipt of the sequencer command,! If the Tug fails to perform its SU Sequencer X
the Tug must separate from the payload | function there will result a Comm
and perform a stand-off inspection via payload, Tug, and service unit System
the TV, loss.
1.4.2. 1| Tug Subsystems |All Tug subsystems are required to Failure of subsystems will All Tug X
Do Not Respond [function to perform the stand-off result in loss of Tug, service Subsystermns
maneuver and continuation of the unit, and payload, -
mission.
1,4.2,2) Interface Fail- The serwvice unit sequencer provides Loss of interface signals will 5U/Tug X
1.4.2- fures Resulting the signal to initiate Tug operations, prevent Tug activation, thereby Interface
2.1 in Loss of Se- backed up by a ground cornmand from resulting in loss of the Tug, connections
1.4.2- [quencer Signals | MCC. The signals then cross the 58U, and payload.
2.2 or Inadvertent interface from the SU to the Tug to
Comrnand, activate Tug systems.

(1) UNLIKELY TO OCCUR
(2) WORK AROQUND APPARENT
(3 SIMPLE-REDUNDANOY

(4} COMPLEXN REDUNDANCY REAQ,
(=) MANNED INTERACTION REQ.
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